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Conformal Invariance in Weyl Gravity 

R. P.  Z a i k o v  1 
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A conformal-invariant model of  Weyl gravity, based on a nondecomposable  
representation of  the conformal group, allows one to have a conformal-invariant 
propagator  in an arbitrary gauge, as well as a conformal-invariant gauge-fixing 
term in the Lagrangian approach. It is shown that in the gauge-invariant sector 
this theory coincides with ordinary Weyl gravity (with conformal-noninvariant  
gauge fixing). The corresponding BRST transformations are found and are used 
for derivation of  the Slavnov-Taylor identities. 

1. INTRODUCTION 

It has been proposed to use the nonbasic representations of the confor- 
mal group (CG) (Mack and Salam, 1969) in the case of conformal QED 
(Binegar et al., 1983; Zaikov, 1983a, 1985; Furlan et al., 1983, 1985). In 
such a way the difficulties with the pure longitudinality of the 
conformal-invariant (CI) propagator and the impossibility of constructing 
a CI gauge-fixing term in the Lagrange approach are avoided. The corre- 
sponding generalization for the non-Abelian case was given in Zaikov 
(1983b, 1986a, b) and for conformal linear gravity in Furlan et al. (1986) 
and Zaikov (1987). Any model of  CI QED considered in Binegar et al. 
(1983), Zaikov (1983a, 1985), and Furlan et al. (1983, 1985) (see also Petkova 
et al. (1985) and Sotkov et al. (1985) obeys the property that in the 
gauge-invariant sector (GIS) it coincides with ordinary QED (with confor- 
mal-noninvariant gauge). However, for the non-Abelian theory this is not 
the case, as is seen from the model considered in Zaikov (1983b). In Zaikov 
(1986a) a CI model of QED and the corresponding CI non-Abelian gen- 
eralization are proposed, both of which have the above-mentioned property, 
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i.e., in the GIS the non-Abelian model also coincides with the ordinary 
Yang-Mills theory. 

In the present paper we consider a CI model of Weyl gravity [see Stelle 
(1977) for references to earlier papers on the subject]. In order to separate 
an appropriate CI model of linear gravity we use the same criterion as in 
the 4-vector case (Petkova et al., 1985; Zaikov, 1986a, b), i.e., when the 
self-interaction is included, our theory has to coincide in the GIS with 
ordinary (with nonconformal gauge), renormalizable (Stelle, 1977; Adler, 
1982), asymptotically-free (Fradkin and Tzetlin, 1982) theory. Such a model 
of linear gravity was proposed in Zaikov (1987). 

To clarify the problem, in Section 2 the results of Zaikov (1986a) (see 
also Zaikov, 1986b) are sketched. Section 3 considers the corresponding 
model of conformal linear gravity when only a 4-vector nonphysical field 
is included. This allows us to find nontrivial CI two-point functions as well 
as CI gauge-fixing. The corresponding self-interaction case is considered 
in Section 4. The Green's function generating functional is written in a local 
form using the Faddeev-Popov 4-vector "ghost" field with subcanonical 
scale dimension-1 (in mass units) transforming on the basic representation 
of the CG. It is shown (on a formal level) that in the GIS this theory 
coincides with ordinary Weyl gravity (Stelle, 1977). In Section 5 the BRST 
transformations are found and used to derive the Slavnov-Taylor identities. 

2. C O N F O R M A L  Q E D  A N D  YANG-MILLS THEORY 

To clarify the problem, let us fist review some of main results of the 
conformal QED and Yang-Mills theory obtained in Zaikov (1986a, b). 
These theories are based on the following effective CI Lagrangians: 

(1) 

where 

1 p.v - -  F F~.. for QED 
4 

1 -8g~Str(G~G~) for YM 

(la) 

t 
' l  +1  a ( D R ) 2 + I  v(DS)2 oAC]R+(O~A~-O~A~)O~Ro~S 8 2 (lb) 

~ E =  l - - t r [ 1  a - 2 ]  v 
"2g = ~OBE]fi+(O"B"-"B")O,.fiO.S+-~(~R) +~(E3S) = 
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0 

~/~EP --~ 
~ tr(({D (Tq +O"[B., 7/])- 2O~'S(~7..E]-O~,O~)[B ~, ~]}) 

Here 

(lc) 

F ~  =o.A~ -a~A. ,  G.~ =a .B~-O . B .  +[B,., B~] 

B.  = B~ T., R = R'~T,~, T,~ are the generators of the group SU( N)  in adjoint 
representation, and ~" and ff are scalar dimensionless Faddeev-Popov 
"ghost" fields. The Lagrangian (1) is CI when the fields A. (B.) and R 
are transformed according to the basic representations ([qb(x), KA]x=0 = 0; 
dp=A~, B.~ R) and S(x)  is the associated homogeneous field with the 
following conformal transformation laws: 

[S(x), D] = ix~OgS(x)-4 
(2) 

[S(x), K~ ] = i( 2xAx" O~ - x20~ ) S( x ) - 2ixx 

Here ~ is the identity operator, D the dilatational generator, and Ka the 
special conformal generators. 

Consequently, supposing that A. (B~) is a basic field and introducing 
the associated scalar field S(x),  which in the non-Abelian case is S U ( N )  
scalar also, we are able to construct the CI gauge-fixing term (lb). Note 
that 5fay in (lb) has the same form in both the Abelian and non-Abelian 
case. Moreover, in the gauge-invariant sector (GIS) these theories coincide 
with the ordinary (with nonconformal gauge-fixing) QED or the Yang-Mills 
theory, respectively (Zaikov, 1986a, b). 

We recall that in the Abelian case we reached the conformal gauge- 
fixing using the nonbasic representations for the electromagnetic potential 
{[A~(x), K~]x=o=2i~7~AR(O)}, 2 (Zaikov 1983a, 1985; Furlan et al., 1983, 
1985) for which the theory in the GIS coincides with the ordinary QED 
(Petkova et al., 1985). However, in the non-Abelian case (Zaikov, 1983b) 
it is not clear whether the theory with nonbasic field coincides with the 
ordinary Yang-Mills theory in the GIS. 

In the latter models, when the gauge potentials are transformed accord- 
ing to the nonbasic representation of the CG, the CI two-point functions 
have nonzero transverse parts, which is not the case for the basic representa- 
tions. To avoid this defect of the basic representations, it is assumed that 
the conformal symmetry is spontaneously broken in the following manner: 

aol0) = ~ uIo) (3) 

6~10) = 6c" V.IO ) (4) 

2 We call representations for which [~(x) ,  KA]x= 0 = 0 basic representations of the CG. The 
nonbasic representations, for which [~(x) ,  Ka ]x=o r 0, are nondecomposable  for any value 
of the scale dimension. 
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Here 8e and 8c~, are the infinitesimal parameters of the dilatational and 
special conformal transformations, and U and V. are operators satisfying 

[ U, A.(x)]  = [ U, R(x)] = 0 

[ u, S(x)] = ~ -  

[ Vh, At. ] : 2 i ~ A R ( x )  (5) 

[ V~, g(x) ]  = 0 

[ V,, S(x)] = 2ixx (~1 - 9) 

where t~ is a constant operator with the following properties: 

( 4tl)o = (~A. (x))0 = (t~R(x))o = 0 

(~S(x))o = const 

The operator t~ is introduced in (5) in order to get the CI two-point function 
for the field S(x)  in the form ( S ( x ) S ( y ) ) o - l n [ / . ~ 2 ( x - y )  2] (Sotkov and 
Stoyanov, 1980). If  it is assumed that [ U, S(x)] = [ V., S(x)] = 0, then we 
have (S(x))o 7 In ~2x2, which is not translational invariant. 

It can be checked that any CI N-point function for the gauge potential 
transformed on the basic representation {[A.(x), K~]x=o=0}, with the 
vacuum state transformed according to (2) and (3), coincides with those 
when the gauge potential is transformed according to the nonbasic rep- 
resentation {[A~(x),/(A]x=0=2irh,~R(0)}. Indeed, for the two-point func- 
tion we have 

8~((O[A,~(x)A~(y)[O)) 

= - i  8ca{(Ol([A~(x)A,.(y), Vx] + [Ag(x)A~,(y),  Kx ])10)} 

= - i  6Ga{(OI([A,.(x), KA] +2iTl,.xR(x))A~(y)lO) 

$ (0]A. (x)([A,,(y),  K:, ] + 2irl~AR (y))[0)} 

= - i  8cA(OI[A.(x)A~(y),  /(~ ]10) 

where KA (/(a) are the generators of the special conformal transformations 
in the basic (nonbasic) representation. Consequently, the rhs of (5) are 
chosen so that [a . (x) , / (~]x=o = 2i~/.AR(0), where / ( .  = K .  + V~.. 

3. C O N F O R M A L  LINEAR GRAVITY 

Now, let us consider the following nondegenerate CI Lagrangian: 

~ L ( x )  = ~lgr -~" ~GF (6) 
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where 

Here 

I . .  x. - " " " ~ "  ( 6 a )  ~,gr = ~h (x )L . . (O)hx , (x ) -C  C . ~ .  
1 ~ v v h(x)M~ (O)h~(x)+~c(FlS) (6b) ~oz-sh(~) (6 . [S]-a .a  )h . (x)+ " * ~  , 2 

AT 1 {A 7} 1 AT 2 1 A "r A~" L,~.(a)=[~a,~6.-~n,~.n ]lq +~(n,~.a a +n a,~a.)E3 

(7) 
Ar  l / .~{ ) t ,3 ' r} . . l  1 A'r 3 "~F'q2 2 ~  ..qA3~" # )t't M .  (a )=~, . .  u -g7 I ~,~,~ -~,.,~, ,. -2a  SL,~. (8) 

C,~v=~u u [ , ~ v ] - ~ u [ , , ~ - v ] - z . t p [ ~ u  uo~*~. ] 

' ~  *" ~h~(x)  (9) 

The symbol {,} ([,]) denotes symmetrization (antisymmetrization), C~. is 
the linearized Weyl tensor, ~7~.(diag ~7~. = (1, -1 ,  -1 ,  -1 ) )  is the metric 
tensor in the Minkowski space-time, h. . (x)  is a symmetric, traceless, and 
dimensionless tensor field transforming according to the basic representation 
of the CG 

[h . . (x ) ,  K . ]  = i{(2x~x~O.-x2Oa)h..(x) 

�9 T p p + 2tx [(~,,~.)~hp.(x)+(Y~,~.),,h,~o(x)] } (10) 

h~(x) is a basic 4-vector field with subcanonical scale dimension -1  (in 
mass units), which is transformed according to the law 

[h~(x), K~] = i{[2x~(-1 + ~ 2 �9 �9 . x a . ) - x  aA]h.+2tx (Ea. ) .h .}  (11) 

and S(x) is the associated homogeneous scalar field transforming according 
to the conformal laws (2), fl is an arbitrary gauge parameter, and c is 
another parameter. 

Then it can be checked that (6) is conformal-invariant. Moreover, &Plgr 
in (6), as well as any term of (6b), is separately CI. 

The interaction with a matter field can be included trough the energy- 
momentum tensor of the matter field T~. = T. . ,  T." = 0: 

, ~ i n t  = h"r(x)r,u(x) (12) 

It can be checked that (12) is CI if T. .  is again a basic field with scale 
dimension 4. 

Let us sketch the proof  of the conformal-invariance of the Lagrangian 
(6). For this purpose we introduce the fields • with the following 
nonbasic transformation laws: 

[ •  K.]:,=o = • + ~7.ah. (0) -~?~.ha (0)} (13) 
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Then the Lagrangian (6) can be represented in the following way: 

~r= (h., +h.~)++G-~(O) +hX~ - ( h . ,  -h,~)--G-X(O) _hA . (6c) 

where 

(:~• 

are intertwining operators (CI two-point function) for the representations 
• = {+, {-1, 0}, {1, 2}} and • = {+, {5, 4}, {1, 2}}, 

• = T~•177 -1 

Here • denotes the nonbasic representation for the fields {h., • and 
• denotes the nonbasic representation for the fields {5 t.,  T~,~} with transfor- 
mation laws 

[ T~(x),  Ka]x=o = 0, [• Kx],,=o=:~2ir.~(O) (14) 

Then, inserting in (6c) 

h..(x) = +h~.~(x) + -h~(x)  (15) 

we find the CI Lagrangian (6). As follows from (13), the field (15) obeys 
exactly the law (10). 

Now, in order to have nontrivial CI two-point functions (with nonzero 
transverse part), we suppose, as in the 4-vector case, noninvariance of the 
vacuum state. For the vacuum state the transformation laws (3) and (4) are 
adopted, where the commutation rules (5) are completed with 

[h.~(x), U] --- [h.(x) ,  U] =0  

[h~.~(x), Va]=-2i[~7~.;~h,,(x)+~.h~(x)-�89 (16) 

[h.(x) ,  Vx] = 0 

In the same way as in the 4-vector case, it can be checked that the CI 
two-point functions found here coincide with those for the fields +h.~ with 
CI vacuum state. The Fourier transform of the corresponding time-order 
CI two-point function is given by 

( (O~(p))~(Dc(p))~, ~ (17) 
= \(Dc(p))~ (Dc(p))~/  
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where 

7r2 ( 02 
(D~(p))~ = ~-~ 6~ap,ap" +2 84(p) 

2i 
(D~(p))L (p=+ iE)4 (6p'*pAp,- - rlx.~p'*p 2 -- 8"dp.~p 2 - 8~pap 2) 

1 { (~  8~"6~,-3 +/3 ) (Dc(p))~ (p2+ i8)4 4 'r/t*~'r/*~- (p2+ is)2 

'-" {,~ F Valj 

+ ( l O-6[3 )pUp~pap. } 

-I- 'rr2~ (6{18 v} 1 ,r/,~,l?a~.)84(p ) (17a) 
24 ~ a  " 2 

Here/3 is an arbitrary gauge parameter. 
It can be checked that 5flgr in (7) is invariant with respect to the 

following Abelian gauge transformations: 

h.~(x)~ h~(x)+Our ) 1 A +O.e.(x)-p?.~O ~ ( 1 8 )  

where ~r is an arbitrary 4-vector function with scale dimension -1.  
We also note that ~?GF in (6) is one of the admissible gauge fixings. 

Indeed, integration over the nonphysical fields h.(x) and S(x) gives 

F ( h ~ )  = j Dh~(x)DS(x)expi  f d4x[~ov+h~J.  + SJ(x)] 

=f DS(x) i f  d4x{2(~]S)2+SJ+f 4 1 . exp d y ~  [M~.h x" 

. 4 ~ -y)[M~ h,~o+J~(y)] ~ + J  (x)] D~,(x ~P 
J 

=f DS(x) expif d4x[2(DS)2+sJ(x)]F(h~,S,J ) 
(19) 

Here J.(x) and J are sources, 
4 v v p D.(x)  = (6 .D  -3a,~o )D4(x ) 

where D4(x) is the Green's function of the equation F-14f(x)=0, i.e., 
E]4D4(x) = -6(4)(x). 3 It is evident that the integral over S(x) can be taken 

3The formal integrals in (19) can be defined using the conformal operator product expansion 
(Petkova et al., 1985). 
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only in a perturbative way. The corresponding Faddeev-Popov determinant 
is given by 

A- ' ( J ,  = 0. H = 0) 

1 A =fD~.(x)F(h.~+o~#.+o~.-~n9 ~) 
= f D S ( x )  D ~ . ( x ) e x p i f d 4 x { 2 ( D S ) 2 [ f e d  y-~-~(~6~D1 

- ~ O , O ~ ) [ 3 ( 4 D ~ ( x - y ) ( ~ a ' ~ - ~ O ~ O . ) [ Z ] ~ ' ( Y ) ] } : c o n s t  

where the following substitution was performed: 

~ . ( x ) ~ & ( x ) - ( 2 8 . D - 6 a . a  ) - 3 1  A -r ~r  A 6~  du ) 

- ~O~Oa O" - 20PSL~;(o) ]h..(x) 

Consequently, as in the conformal QED and Yang-Mills theory, in GIS 
the theory is equivalent to the corresponding theory with nonconformal 
gauge (for instance, o"h.~ = 0). 

4.  SELF-INTERACTION THEORY 

Consider the following CI effective Lagrangian: 

~ ( n )  : ~C~gr at- =~~ ~ F P  (20 )  

Here ~gr can be found from (6a) by substituting the linearized Weyl tensor 
with the full Weyl tensor. 

= R~.v,. - �89 (x)R.~ + g~(x)R,a - g,.(x)R~A - g.x ( x ) n . . ]  

+ ~[ g~.A (x)g~(x)  - gu.(x)g.x (x)] (21) 

i.e., 

~gr = C ~ ' C ~ A ~  (22) 

Here R~A~ is the Ricci tensor, R~. the curvature tensor, R the scalar 
curvature, and 

g.~(x) = ht..(x)+ "q.. (23) 

is the metric tensor in Riemannian space-time. As is well known, the 
Lagrangian (22) is invariant with respect to the metric transformation 
g.~(x) -* ~o(x)g~.~(x). This fact allow us to impose the constraint detlg~] = 1, 
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and consequently, h.~(x) in (23) becomes a traceless tensor as in the 
linearized case. The term ~OF in (20) has the same form (6b) as in the 
linearized case and the Faddeev-Popov term ~FP is given by 

~vp(X) = O~'(x)./g~O~(x) (24) 

where O~ (x) is anticommuting Faddeev-Popov 4-vector "ghost" field whose 
conformal transformation law is the same as for the field h.(x), 

v _ _ p l [ . c ; { A R ' r } _ l _ l  A ' r .  7 "1[ '72 2 A ~" p A~" v ~ / l . - t ~ " .  ~" -~r# ~,.j~ -~0.0 0 []-20 SL.p]D;~. 

~" ~ (25) = M .  Da~ 

and 
A - -  A A r A ~" A D , ~ -  6{,av} ~ . .a  A + 6,h.va + - a~h,~a - a  h , ~ -  h~.~a A 

is the covariant derivative. 
The Weyl tensor C.~a. is transformed with respect to the conformal 

transformations in the same way as C~.~a. and consequently the CI of LPg. 
and 5~GF is evident. 

p To prove the CI of ~FP. we use that D .~O,  is transformed in the same 
way as h . .  (if O, and O,  are basic fields with scale dimension -1) .  i.e.. 

P [D,~Ov, K, ]x=o = 0 

which can be checked by direct computation. Then the CI of the Faddeev- 
Popov term is implied by the equality 

,~vp=~.GF(ht~oO.,h~v~D~vOp) 1 tx v 3 v 2 -~h (6~D-~O~O )D h~ 

which follows from (23) and (25) if it is taken into account that the term 
~2h~(8~[~ -0~,0 ~) D2h~(x) itself is CI. 

The Lagrangian ~qgr (22) is invariant with respect to the non-Abelian 
gauge transformations: 

8h~(x)  = D ~ h  x (x) (26) 

induced by the coordinate transformations 6x. = h.(x). 
Now, let us write down the Green's function generating functional: 

Z(J.,., J., J, h, h) 

= J Dh.~ Dh~DS DO DO 

x exp i J d4x [ ~ ( x )  + h'~(x)J.~(x) + h ' (x)J . (x)  + S(x)J(x) 

+ 0 h  +/~O(x)] 

= Dh.~OSexp i d4x [5fg~(x)+h (x)J.~(x)+SJ(x)] 

x F(h.~, S, L)  ~(h.~, S) (27) 
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where J~(x),  J~(x), J(x), h(x), and/T(x) are sources, F is given by (19), 
and A is the Faddeev-Popov determinant 

A = d e t { ~ ( h . . ,  S)} (28) 

In order to prove the identity 

N f D S ( x )  IDh~(x)F(h~+Sh~,S , |  (29) 

where A is the Faddeev-Popov determinant corresponding to the F(h~,  S), 
we use the representation of F given by (19) 

F(h.~, S, J~) = exp i(o~) 2 = I Da(x) eia~(~)8(~- a) (30) 

It is easy to check that 

o% (h~,  S, J . )  =t~[3.D - ( 1  + t.4~)a.O 130(h~, S,; . )  

=iJ[6.D-(a+t.,/2)O.O ](M~ ha.+J~) (31) 

Here the operator M~" is given by (8) and ~ = y"a. is the Dirac operator 
arising as a square root of the D'Alambert operator El]. 

Now, using the Faddeev-Popov trick, it can be checked that in the 
GIS the substitution 

FA -~ ~-A (32) 

does not change the generating functional (27). Let us remark that the 
determinant corresponding to o~' in (31) differs from A in (28) by a multi- 
plicative constant. Then, it is evident that in the GIS, (27) is equivalent to 
the corresponding generating functional with nonconformal gauge, for 
instance, the harmonic gauge o"h.~ = 0. This allows us to use the results of 
Stelle (1977) on the renormalizability and unitarity of the theory under 
consideration. 

5. BRST S Y M M E T R Y  A N D  S L A V N O V - T A Y L O R  IDENTITIES 

As a whole, the Lagrangian (20) is not invariant with respect to the 
gauge transformations (26). However, as in the ordinary case (Stelle, 1977), 
there is a remaining BRST symmetry with respect to the transformations: 

8h.~(x) = ~SA (sh.~) = 8A D~v| 

~Sh~, ( x ) = ~SA ( sh. ) = 0 

8S(x) = ~A (sS) = 0 (33) 

, ~O . (x )  = & ~ ( s O . )  = -,~a o ~ O . ( x ) O ~ ( x )  

8 0 . ( x )  = 8A(s0 )=  -SAh.(x)  
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Indeed, the term ~gr in (22) is invariant with respect to (33) because 6hr~ 
is a special kind of gauge transformation (26). It can be checked that 

6( D~O;~) = 3( Shr~) = 3(30)  = 6(30)  = 0 (34) 

which follows from the nilpotency of the transformations (33). Then, from 
the equality 

- - .  v - - .  A'r ~" 
~ ' F P  ~ ( ~ O  , A / / r O  v : t ~ O  M r D~O~ = --8~?GF 

we obtain the invariance of the Lagrangian (20) with respect to the BRST 
transformations (33). 

In order to derive the Slanov-Taylor  identities, let us write the one- 
particle irreducible Green's  function generating functional: 

r (hr~ , h . ,  Or ,  Or ,  Kr~ , /2 .)  

=O(%~,  %,Xr ,  X . , K r ~ , L . , f . r )  

- J d4x [r'Vhr~ + rrh .  + OrXr + 2 r O r  + Kr~(shr~) + Lr(sO)r  

+ s  (35) 

where %~, %, /%,  and )?r are sources of  the fields h ~ ,  hr, Or ,  and O .  and 
K.~, L . ,  and E r are sources associated with sh.~, s o t ,  and sO r.  

Taking into account that the Lagrangian (20) is invariant with respect 
to the BRST transformations (33), from (35) we find the following Slanov- 
Taylor identities: 

~r  a r  ~r  a r  8 r  s r  
t - -  - -  + - - 0 ( 3 6 )  

3h r~ SK.~ 60  ~ SL r 60  r 6L r 

For deriving the ST identities (36) the nilpotency property (34) of  the BRST 
transformations is used, The conformal invariance of the ST identities (36) 
follows from the commutativity of  the conformal transformations (10) and 
(11) with the BRST transformations (33). Moreover, the identities (36) are 
found in symmetric form without using the "ghost"  equations of  motion 
(Stelle, 1977). 
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